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Abstract

This paper reveals new insights in the aeroelasticity and
flight mechanics of flexible aircraft by obtaining and
solving the equations of motion for a flexible,
accclerating, rotating aircraft. We illustrate the approach
for three cases of increasing complexity: The first case
is a "sprung" pendulum. It shows when rigid body
angular velocities can be important in the flexibility
equations as they approach as the flexible frequencies.
The second case is a typical section airfoil on an
accelerating, rotating fuselage. It applies Lagrange's
equations to a longitudinal problem in inertial
coordinates, then transforms the equations to
noninertial, body - fixed coordinates for solution. It also
shows when rigid body rotations and longitudinal
accelerations must be included in the flexibility
equations. The third case is the general
longitudinal/lateral motion of an accelerating, rotating,
flexible vehicle. Rather than setting up the generat
problem in inertial coordinates and then transforming to
body - fixed coordinates, instcad we usc the idea of
"quasi - coordinates". We establish a general form for
Lagrange's equations in the noninertial, body - fixed
coordinates. The paper gives the general equations and
reduces them to a special case of a "{lat" airplane. It also
gives guidelines as to when the rigid body rotations and
accelerations are important factors in the flexibility
equations.

1. Introduction

For many years there has been a search for a practical
set of "unified" equations of motion that can be used in
all of the disciplines of acrodynamics, structures and
stability and control of flexible aircraft. Such an
approach would allow the customary determination of
the effects of structural flexibility on aircraft
performance, stability and air loads. An added bencfit is
that it would also allow us to determine the effects of
the "rigid body" motions on acroelastic characteristics
such as control - effectiveness, divergence and flutter.
Further (and most importantly), it would allow all of
those engincering problems to be treated by subsets of a
single set of "unified" equations. In effect we want to
convert the aeroelastic problems into coordinate systems
and cquations that arc conventional for aircraft flight
mechanics, stability and control.

In many aircraft applications, the mutual coupling of
rigid body and flexible motions has been small because
the vchicle angular velocities and flexible frequencies
were wcll separated. However, there have been recent
examples of large aircraft where flexible frequencies (say
2 Hz) begin to approach the rigid body angular
velocities (say 1 Hz). Other cases have been known
where the aerodynamic forces can drive the structural
frequencies and the rigid body frequencies close together.
In both cases the coupling effects should be accounted
for in the lowest order equations of motion to obtain the
correct modeling.

To develop the necessary equations we must account for
the fact that the aircraft's body - fixed coordinate system
is not (in general) an inertial system. Dusto et al Ml
Bekir et al [2] and Waszak and Schmidt [31 arc a few
examples of earlier atiempts which have had to leave
out crucial terms or were difficult to implement. This
paper shows that a practical set of equations for general
problems is available through the use of energy
methods, Lagrange's equations and "quasi - coordinates”.

We illustrate the approach for three cases of increasing
complexity: The first case is a "sprung" pendulum. It
shows when rigid body angular velocities can be
important in the flexibility equations as they approach
as the flexible frequencies. The second case is a typical
section airfoil on an accelerating, rotating fuselage. It
applies Lagrange's equations to a longitudinal problem
in inertial coordinates, then transforms the equations to
noninertial, body - fixed coordinates for solution. It also
shows when rigid body rotations and longitudinal
accelerations must be included in the flexibility
equations. The third case is the general
longitudinal/lateral motion of an accelerating, rotating,
flexible vehicle. Rather than setting up the general
problem in inertial coordinates and then transforming to
body - fixed coordinates, instead we use the idea of
"quasi - coordinates". We establish a general form for
Lagrange's equations in the noninertial, body - fixed
coordinates. The paper gives the general equations and
reduces them to a special case of a "flat" airplane. It also
gives guidelines as to when the rigid body rotations and
accelerations are important factors in the flexibility
equations.

The equations become somewhat more complicated, and
it is uscful to examine them in three stages. First, some
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insight is available via a simplification which considers
the rigid body motions mercly as constant parameters.
There the rigid body motions alter the flexible
frequencies of vibration, thereby altering acroclastic
stability. Second, a more exact approach is to recognize
that the flexibility equations have some of the
characteristics of Mathieu's classical ordinary differcntial
equation. The similarity to Mathieu's equation
introduces the possibility that the coupled rigid -
body/flexible motions can be unstable within narrow
ranges of frequencies and amplitudes, even without
aerodynamic forces. Third, the ultimate procedure is
always available - the simultancous solution (perhaps
numerically) of the fully coupled, non - linear, rigid
body and flexibility equations of motion in body - fixed
coordinates.

2. Lagrange's Eguations

If the inertial coordinates of a dynamic system can be
represented in terms of N independent generalized
coordinates:

X=X(q) Y=Yq) Z=Zg;)

Lagrange's equations [4] can describe the motion of the

system:
d(dLY_JL _ .
E(ﬁq}-) a0, =

where:
L =l.agrangian, T - U
O; = Gencralized Force
T =Kinetic Encrgy

U = Potential Energy

For simple geometries, it usually is a straightforward
matter to write down the inertial coordinates, inertial
velocities, kinetic and potential energics, the
Lagrangian, and the various derivatives. For complicated
geometries, the process can become tedious, but
Whittakerl 3] showed that, if the kinetic energy can be

expressed in terms of the coefficients m;;
n n
1 .
T =5 M
i=1jl
Then the equationq of motion can be written

Emtﬂj"EE J‘Iﬂk Q+E’(aq,> gTL,{

where the Christoffel symbol is:
[Jj k] ( gm N gmy M )
i |72\ 7 ;o

Olsenl 81 showed a related {and sometimes) simpler
approach, noting that if we could write the partial
derivatives:

_9X y _ oYy 9z

! aq Y, = aq Zi = aq,-

We don't need the often tedious expressions for the
kinetic energy, and the equations of motion take the
form:

n n n
iy + 3, Sy = 0+ H{45) - B
1 g =
where:
j(x,-xj + XY, + Z.Z;)dm
mass
g = f(XX ko + XY + ZiZjy )dm

mass

Even though Whittaker's and Olsen's expressions look
simple in principle, in practice their implementation
can be quite lengthy for complicated geometrics with
many degrees of freedom. The development of the
required expressions can be greatly assisted by symbolic
algebra software.

3. Example of Coupled Rigid - Flexible
Motions, The "Sprung" Pendulum

In the first casc we want to determine when "rigid body"
motions can have important effects on the flexible
motions. Consider the "sprung" pendulum which is free
to rotate or oscillate about the origin in the x, y (or

r,0) planc, but which also contains a radial spring of
linear stiffness k (Figure 1). We will refer to the angular
motion as the "rigid body" motion and the radial motion
as the "flexible" motion. Proceeding through the usual
prooess[4] of the inertial coordinates, inertial velocities,
virtual displacements, kinetic energy, potential encrgies

(due to stiffness and gravity), the Lagrangian 1s:

= %m(r"2 + rzéz)—- %k(r - rk)2 - mg(rsin@ —Yg)

From Lagrange's equations the radial differential
equations is:

.. ; F, .
r +(w% —62)r= 7’+~,’fl-rk - gsinf

We also can obtain the angular equation, but we can
always interpret it as the angular force required to
produce the stipulated motions.

3.1 Rotation at Constant Angular
Yelocity




In the first case we stipulate that the pendulum movcs
through a complete circular motion at a constant
angular velocity of (. Then8 = @, and the radial
differcntial equation is:

k

o Tk — gsinwt

. F,
r+(w% —wz)r= =4

Regardless of the radial force, the radial response acts as
if the natural frequency in the radial direction was

- ’ 2 2
weﬂective wo-w

3.2 Simple Harmonic Rotation

In the second case we stipulate that the pendulum
oscillates through an amplitude HO with a constant
frequency @ . Then 0 =60 sinf , and the radial
differential equation is:

)
.. (2] F,
¥+ Lo — 2201 +0032wt)]|r= —~ +m(2)rkl

The complete solution of the radial equation depends on
the LHS, RHS and initial conditions. The L.HS can be
converted, with a change of variables,

T=qt a=Z’—)g—-%0§ b=i—63

to the classical Mathieu's equation.
[r" +(a-2bcos27)r = 0|

Mathieu's equation applies to the vibrations of spinning
satellites, buckling of beams with periodic end forces,
the saturation of loudspeakers, tides in circular bodies of
water and many other problems. In our application, if
the radial force does not depend on r then the stability of

the solutions depends only on the frequency ratio _CZ)_O_

and the angular amplitude 0

Intuitively, one would expect that the effects on
stability would be small unless the angular amplitude is
large or the frequency ratio is near 1. Figure 2 (from
McLachlan' * ') shows the classical plot of the regions
of stability/instability for periodic solutions of
Mathicu's cquation. Regions of instability are shown to
be emanating from the points

2
a- (‘—‘;,2) -1 -1,22,3%, . a2

So a question becomes - what practical values of a, b
put the solutions into the stable or unstable regions.
For instance, in the neighborhood of a=1, we can usc
Mcl.achlan'sl7] boundaries to obtain a region for
instability for small b. Figure 3 shows the lower and

upper bounds of the narrow unstable region for
frequency ratios near 1 and for angular amplitudes up to
10 degrees. The instability range continues to widen for
higher vatues of the angular amplitude. For frequency
ratios near 2, 3, 4,..., the instability ranges exist, but
over ever natrower ranges of angular amplitude.

We also can integrate the equation numerically. Figure
4 shows typical time histories for a frequency ratio of
1.1, damping of 0.02 and amplitudes of 0.53, 0.54 and
0.55 radians. The solutions are stable for 0.53 radians
and unstable for 0.54 and 0.55 radians. Figure 5 gives a
general pattern for the smallest amplitudes to produce
instability for damping of 0.02 and frequency ratios up
to 2.

.In summary, the problem of the "sprung" pendulum

shows that rigid body motions can affect the flexible
motions:

a. Constant angular velocity reduces the
"effective" radial natural frequency;

b. Forced sinusoidal angular motion can
produce radial instability near integer vatucs of the
frequency ratio as the angular amplitudes grow large.

4. Typical section Airfoil on an
Accelerating, Rotating Fuselage

The second case is a problem that is closer to practical
interest - a typical section airfoil on an accelerating,
rotating fuselage. We will apply Lagrange's equations in
inertial coordinates, then transform the equations to
noninertial, body - fixed coordinates for solution. We
want to show when rigid body rotations and
longitudinal accelerations must be included in the
flexibility equations.

Consider a slender airfoil which is mounted on a slender
fuselage. (Figure 6). The fuselage has incrtial

coordinates X = qq, ¥y = ¢ and pitch angle

0 = g3. The airfoil is located at fuselage position

X = X,, and has its own degrees of freedom in vertical
translation i = g4 and rotation 0 = gs.

4.1 Equations of Motion

For a general point on the slender fuselage and airfoil
the inertial coordinates are:

FusdlageX = g1 +xc3 Y =g + x53

X =qy+x,03—q45 +8&C
Airfoil 1 wt3 43 35
Y =qp +X,83 + 4403 + 5535
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Proceeding through the usnal process of the incrtial
coordinatces, incrtial velocitics, virtual displaccments,
kinctic and potential encrgies (due to stiffness and
gravity) and the Lagrangian for the complete
fusclage/airfoil system, we cstablish the complete
nonlinear equations in inertial coordinates. Then, it is
more convenient to actually solve the problem in a
body - fixed coordinate system. So we define the

"apparent” body - fixed components of the vehicle's
velocitics and accelerations by

dx =qC3+ 4283 4y =423 - 193
dx =q@13+ 4253 Gy =43 - G113
We simplify further by dropping second order terms in

q4. g5 to obtain the linearized equations in terms of
noninertial, body - fixed coordinates.

[ My 0 Mgy 0 Mgl [Mg 2My  2M4)
Lo my My My M45||q,| g, o o lfas)
: M3 My My Mﬁ '{‘I;} 4l _0 0 0 }i‘hl‘
| o Mu M3a My 1‘44‘ Mg O 0 4s
{Mps Mg Mg Mg MssJéS Mygs 0 OJ
[0 0y { (0] (Mg} [Qe+@sy | 0 )
o vl L pal |0l Jes-on] |0 |
+lo OIq’1 vol il vy -t il O3 +1 0 4
by olsh i, 1o |J o | e
sl U L) Liesl) | o | oo
where
fdm
wing
Sy = f§dm
wing
2
I, = f§ dm
wing

Mss = Ie+ Ly + mwxﬁ, +28,x,,
M3y =m,x, +S,,

M35 =1, +S,%,

Mys =S,

Ms334 = my,qs +S,45

M335 = Sy (94— x445)

Mazs = S,,45

M3 =S¢ +x,m,+ S,

4.2 Separate Rigid and Flexible
Equations - Body Coordinates

The total solution requires the solution of the five
coupled cquations. It can be convenient to separate the
complete equations into separate rigid equations and
flexible equations. If we separate the purely rigid body
terms, coupling terms and purcly flexible terms - the
lincarized {lexibility equations, in body - fixed
coordinates, (with damping added) arc :

S N R

Ao ei-als st el 1G]

g g i P
4.3 Yibration Solutions

Immediately we can sec hints of the effects of the pitch

rate 93 and the acceleration along the body axis g, as
they alter the "effective stiffoess” in the flexibility

equation. Assuming ¢3, g, are constants, figures 7 and
8 show the effects of aircraft pitch rate on the coupled
(unbalance not equal zero) airfoil frequencies of
translation and rotation for the airfoil slightly aft and
slight forward (1 chord) of the aircraft axis.

In the case of the unbalance equal zero, the vibration
equations are uncoupled and the translation mode just
acts as if the "effective" stiffness is

2]

kay =ka- mw‘[3'"k4ll-_ (qi)J

In the case where the 43 = O but the unbalance is not
zero, the equations remain coupled, but the torsion
equation acts with an "effective” stiffness

{ xw qx
ks =Sudx = ks\ 1- 2= “i% qg)

Whether the effective torsional stiffness is slightly
larger or smaller depends on the sign of the unbalance
and whether the aircraft is accelerating or decclerating.

4.4 Aeroelastic (Hypersonic)
Equations

We use (for convenience) hypersonic aerodynarmics from
piston theory ], to obtain the hypersonic flexibility
equations.

T S|, [Mce O 1 411 FN\|aa

o el B e mga Al

(143 0] [ P 10 On

uo A 3 R A S b

s Gl SR s

where the nondimensional variables are defined by:



lengths
c=chord l=span

* -
positions/coordinates x,,, = ¢x,,, &, = ¢&j,
q4 = Cé4 qx = céx qy = Céy

inertias
~ 2.2
Sy =mycx, I, =m,cn,
stiffnesses
kg = mwwi ks = Iww% = mwc2?£w§
dampings
2,2
Cq =2m,w464 C5=2m,,Cr,ws55
time and frequency
t=T%, A=$"
time derivative
. Ve ) v, \2
f(0)=f'&)= )= f"(x)=+
air density and gravity
2
_ Pl o 8C
Au‘— me g Vo%
acrodynamic coefficients

2.2
Q4 =N, = V.%ICCNW Os=M, = pVulc CMW
Geometry integrals
~ ~ A ,\2 PN
H=§,-05 FK=§,~§,+0333...

As usual, the damping is modified with the acrodynamic
damping and the stiffness is modified with the
aerodynamic stiffness. However, the stiffness also has
terms that are proportional to the nondimensional pitch

’ ) ) . "
rate 93 and the nondimensional acceleration 9 x .

4.5 Rigid Body Motions as Constant
Parameters in the Aeroelastic Equations

Now again consider the pitch rate and the aircraft
acceleration as constant parameters. From the
differential equation and the vibration solutions, we
know that the rigid body pitch rate will decrease the
bending frequency (even if only slightly), and that the
rigid body acceleration (or deceleration) along the body
axis can increase or decrease the torsional frequency.
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Therefore those rigid body motions also can alter the
aircraft speeds for acroelastic divergence and flutter. For
example, under the assumed conditions we can obtain an
approximate expression for the p required for
acroelastic divergence:

2.2 sogaon s [y n
Mo g [, 23wl 2w 2) Zwildi+gs)]
L SRR AV AR A N R Al ]

where
&= q%4 ¢= }%5

which shows the importance on the divergence speed of:
a. ¢, the ratio of the pitch rate to the
uncoupled translation frequency;

Arr

b. g]f , the relationship of the acceleration to
5r w

the torsional frequency and the radius of gyration
c. ¢, the ratio of the uncoupled translation and
rotation frequencies

d. %:}L , the relationship of the unbalance to the

radius of gyration.

We also can use the hypersonic aeroelastic equation to
do an eigenvalue calculation (dropping the RHS) to
obtain flutter solutions. Figures 9 and 10 show
representative effects of pitch rate and acceleration on
hypersonic divergence and flutter boundaries.

4.6 Forced Rigid Body Motions in the
Aeroelastic _Equations

Rather than assume that the rigid body motions are
constant parameters, we can assume representative
forms for their time dependent motions and then plug
them into the flexible equations of motion. We need the

terms > 43> B3> qx-qy and g3. Following

Etkin'sl  notation we can assume the time dependent
forms for the oscillatory, damped speed, pitch angle and
angle of attack, wherein each expression the terms a and
b are assumed constants:

qx = uo + E(auSl + buCI)

0 =q3 =0¢ + E(agS; + byC))

=g+ E(aasl + bacl)
where

Sy =sinnow.t  C, = cosnapt
w,, =assumed "rigid body" frequency

E =e— CUrbgrbt

Srp = assumed "rigid body" damping

Noting that q y= Gx® and combining angles where
possible, we obtain the "forcing terms" to be included
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.2 .
in the equations of motion. The terms 43 > 4 x appcar
on the LHS of the equation and influence stability:

Gy = “’rbE(ac'ijI + b('jxcl)

5 =30nE* (K2 + @28 +b2C
= = 2+a2% +b.o >

3 =2% BB g 2

The major point is that terms S, = sin 2w,,z_and

Cy =cos2wypt _on the 11IS introduce behavior like that
of Mathieu's equation.

5. The General Case - Three Dimensional
Motion of a Flexible Vehicle

5.1 Geometry

We start with an inertial X, Y, Z coordinate system and
anoninertial X, y, 7 system that can accelerate and

rotate in the X, Y, Z system (Figure 11). The origin of
the X, Y, z is located in the inertial system at:

X=Xo=q1 Y=Yo=qp Z=2Z=¢q3

The orientation of the X, y, z system is given by the
conventional sequence of Euler rotations:

Y=q4 0=95 ¢=G¢
5.2 Inertial Coordinates
Then inertial coordinates of a general pointin X, y, z

are:
{x.v.2} = {q1.92.q5} +[7}{x.y. 2}

where [17] , the Euler transformationl 9], is the product
of three transformations that depend on the Euler angles:

[7]=[74]7s] %]

[c4 -s4 0] [es O ss] [1 0 0]
[ta]=ls c4 Ol [w]=10 1 Ol [%]=10 ¢ -s6l
lo o 1 l-s5 0 o] o ss ]

§;=8ing C=CO0S¢g;

We also write the "local" coordinates in terms of
additional generalized coordinates §7,4g...q,, :

{x,y,z} = i{xiayiazi}%'(t)
i=7

to obtain the inertial coordinates in terms of the
generalized coordinates:

(X.,2) = {g1g20a5) + TS (o3 Ja (9
i=7

'The kinetic encrgy, in icrms of the inertial coordinatces
is a lengthy expression which shows why it can be
useful to use Olsen'sl 81 form of the equations of
motion (which doesn't require the kinctic energy), rather
than Whittaker'sl3] form which does require the kinetic
energy.

5.3. Overcoming the Tedious Aspects
-_Quasi Coordinates

Again, we could usc Lagrange's equations on the
Lagrangian in inertial coordinates to obtain the
cquations of motion for the flexible system. We would
be accurately accounting for all of the inertia couplings
that arise from the fact that the nonincertial x,y, z
system is accelerating and rotating in the inertial X, Y,
Z system. We could solve the problem in terms of the

incrtial translations gq, ¢», g3 and the Fuler anglcs
q4-95,q¢ and then transform the results to the
translations along the body axes gy, gy, g, and the

instantanecous angular velocities @ ., 0 y: Bz using
the transformations:

{00 ay0:} =Ie1 {1,923}
{wx 0y, wz} = [a]{c]4,q5, é]6}

where
[-s5 0 1]
[a]=lessg ¢ O
lCSC() -S$6 OJ

The approach is correct in principal. However, it works
casiest for special cases like rotation about one axis
(where the time derivative of the appropriate Euler angle
is indeed the angular velocity). However, it suffers from
two shortcomings in the general case of three
dimensional motions.

First, the generalized coordinates gy, ¢, 43

are the (ranslations in the directions of the inertial
coordinates. We would like to replace them with the
translations in directions of the noninertial, body - axis

coordinates ¢ ., dy.q;-

Second, the generalized coordinates g4,45,45
are the Fuler angles. Their ime derivatives g4,45,45
may not be the physical angular velocities of the X, y, z
system for general motions. We would like to replace
them with the physical angular velocitics of the
noninertial, body - axis coordinates, @ ,., (0 y @y



Howcver, a much more elegant and simple method is
available, the method of quasi - coordinates due to
Hamell 101 and Boltzmannl 111, The term "quasi -
coordinates" refers to the fact that we cannot (in the
genecral case of three dimensional motions) directly
integrate the angular velocities to get the generalized
coordinates. Actually all we are doing is performing the
transformations before we apply Lagrange's equations to
obtain the differential equations, rather than after we get
them.

Whittakerl 51 and Meirovitchf 121 explai‘n the method
of quasi - coordinates for the special case of rotational
motions. Several others, among them Nayfeh and

Mookl 13], give applications.

The basic idea is that we want to write Lagrange's
equations in a form that treats directly the body axis
translations ¢, 4y, 9, and the true angular velocitics
Wy, Wy, D 7. We start with the usual form of
Lagrange's equations in terms of the original,
independent generalized coordinates gy, ¢, - -. g, and

their time derivatives g1, ... g :
4oL\ _(dL) _ o
(%) - (%) -2

The Lagrangian can bc written in the usual form in the
original inertial coordinates:

L_J%ﬂb%ﬂ$%ﬂ&%w%ﬂ
\41.92,43,44-95.96-97-4n

If we note that:
{d4-45.96} =[

ﬁ]{wx,wy,wz}

fO 65—1S6 Cg 1C6]

[Bl=lal"=l0 ¢  -s¢ |

[1 1556 t5Ce J

where

we can obtain the equivalent form of the Lagrangian in
the quasi - coordinates:

~ i(qx’qy’qz3Q4vQS=QGaq7,---qn; )
\qx,anqz> a)x,wy ,(Uz,q"],. ..qn

Then, following Whittakerd 51 we can obtain the
equations for:

Translation DOFs:
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PANEANNEA
EZNED % | (9]
FiE i R =T ot
il Ll il o)
laqz J laqu laqz J

Rotation DOFs:

{ o) [@1 A

a(ux Iam ]
L, _ [ﬁ]T{ ‘9L> s[oR-L 1 - [ﬁ]T’.Qs}

|,9L| ¥l l,;LI |26

l&wzJ | %6 ) lﬂwzj

Hexible DOFs remain the same (except that we must
use the modified Lagrangian L)

d ol _ 3L _ 0 fori
& o, o.,qi—Q, fori="7

where:
[ 0 -o wy ]
[Q]= I w, 0 -w, l
0y, Wy 0 J

These are the equations of motion in_terms
of quasi - coordinates. They are the
fundamental advance which allows us to
formulate a unified set of equations that can
be used without simplification for the
aerodynamics, structures and stability and
control of flexible aircraft - they allow us to
place the aeroelastic problem into a
coordinate system and notation_that is used
in_flight mechanics and_stability and contrel.

5.4 Energies - Noninertial Body -
Axis Coordinates

The kinetic energy in terms of the body - axis variables
is:
KE = %.M(qg +g2+ qg)
+8, (40, ~ 2,0,) +5,(4,0, ~ 4,9,)+ S (4,0, -4, )
+aly ( o ) Ly 0,0y - 1,00,
'+-2-1 (a)x +a)§) Iyzwya)z +2-lz (mi + cui )
+8:q, + 854y + 834,
Ly - Iy, +(Lys ~ L )or + (s - Lo,

+-;-(15d + I, +1i)
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where typical incrtia integrals are:
M= f dm
body

Sy =fxdm=2(fxidm}[,- = ESxiqi
] i
A =fkdm = z(fxidm)q'i = E Sx‘,q,-
fxydm Esz.VJdm)‘hqj E[x‘y qidj

body

fxydm E(fxt}’jdm)%q] Elxy 4iq;

body

The potential energy due to gravity will come from our

gravitational model. In the case of a "flat earth™:
=-g f(Z— Z,ef)dm

mass

n Sxi
=—g(q3—Zref)m~g|_0 0 IJ[I]E{[Sy'lqi
1|5y

We expect the potential energy due to flexibility to be
of the form

n n
Vi = 3 2 > V914
i=7j=7

Or perhaps a more general expression for larger
deflections

n n n
Vf =%E E b8+ Z

n
2 b9 A j
1=7j=7 k=7

||M:

The author has performed those operations, and the
complete set of differential equations is availablie (but
too lengthy to present here).

5.6 Simplification to the "Flat"
Airplane

If we specialize the general body to consider an
essentially "flat" surface in the xy plane (Right handed

xyz coordinate system attached to the body), Figure 12,

and make the usual definitions

g, =U vclocity along the x axis
g, =V vclocity along the y axis
g, =W velocity along the 7 axis
w, = P angular velocity about the x axis
w, =0 angular velocity about the y axis

w, = R angular velocity about the z axis

dx,y.0)= Y 7(xy)q{1)

]
The equations of motion become

Translation
. L . (P +# !
S e TR
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The equations above are the equations to solve for the
static and dynamic response and stability of a flexible,
"flat” aircraft under steady state flight or in accelerations
and maneuvers. They are nonlinear and mutually couple
the overall rigid body motions with the flexible
deflections. They can be used for analyses of aircraft
performance, stability and control, flight loads, control
cffectiveness and acroelastic divergence and flutter. Of
course they are more complicated than the conventional
nonlinear equations for rigid body motions or the linear
equations for acroelastic response (which are coupled to
the rigid body equations only through the
acrodynamics).

5.7 Perfect Masses and Modes
In the special case of
a. Mass symmetry about the y axis



b. Origin at the center of mass
¢. Perfectly orthogonal free - free modes

the equations of motion simplify further to the usual
rigid body equations and the modified flexible equations:
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where
w; = natural frequency of the perfect ith mode

If we assume, for the moment, that the angular
velocities P and Q are constant, then one
approximation would be to treat the flexible equations
as if the effective structural frequency for any mode is
just replaced by

w—>w (P2+Q)

On the other hand, since P and Q will be functions of
time, the actual behavior will be more like the behavior
of solutions to Mathieu's equations.

Many recent developments numerically integrate the
linearized equations of motion with nonlinear
aerodynamics on the RHS. It seems that, once the
analyst has committed to numerical integration of the
equations of motion, there is very little additional labor
(or computational time) to use the more comprehensive
equations of motion above.

6. Summary, Conclusions

‘ 1. Whittaker's and Olsen's expressions can be useful to
formulate the equations of motion for complicated
| geometries with many degrees of freedom.

2. The "sprung pendulum” shows that a rigid body
motion with constant angular velocity can reduce the
"effective” natural frequencies. Using the resemblance to
Mathicu's equation, we have seen that there is a

coupling mechanism between the rigid body and flexible
motions, even in the absence of aerodynamics. It
appears that if a flexible frequency isupto 1.3 - 1.5
times a rigid body frequency, then those coupling effects
should be considered. In some cases ("slender” aircraft)
the natural frequencies may already be in those ranges.
In other cases (the X - 29) the aerodynamic forces drive
some of the flexible frequencies down toward the rigid
body frequencies.

3. The airfoil on an accelerating/rotating fuselage shows
that the effective bending stiffness is reduced by a
constant pitch rate. It also shows that torsional stiffness
is increased or decreased by constant
acceleration/deceleration, depending on the sign of the
unbalance. The results modify the divergence and flutter
speeds. If we impose the rigid body motions as forced,
sinusoidal, damped motions - then terms appear in the
differential equations which can produce additional
instabilitics, such as in Mathieu's equation.

4. In the case of general motion of a flexible body, the
combination of energy methods and quasi - coordinates
can produce a practical set of equations that govern the
aerodynamics, flight mechanics and structures problems
of flexible aircraft. They allow the determination of the
effects of structural flexibility on aircraft performance,
stability and air loads and the effects of the "rigid body"
motions on aeroelastic control - effectiveness,
divergence and f{lutter.

5. For the special case of the "flat airplane” with perfect
mass distribution and perfect modes, a simple
preliminary estimate of the effects of rigid body
motions on flexible motions would be to replace all of
the structural frequencies by

—>w, (P2+Q)
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Figure 1. The Sprung Pendulum

G
/7/ i
% /// /////’l/’//////é ‘/’//,
,,////////// //,/{//////%//,7//

.+./‘ 64'("‘(4 7

- — e — —
~

')

/,4
7

7o

4
@

e
-~

» X

6 / . s

e W,
10 15

© 5
b

Figure 2. Regions of Stability/Instability for Periodic
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Effects of Pitch Rate on Natural Frequencies,
Airfoil  Aft
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Figure 7. The Effects of pitch Rate on Natural Frequencies,
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Figure 11. General Motion of a Flexible Vehicle
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